$1 p$ is inversely proportional to m.
$p=48$ when $m=9$
Calculate the value of p when $m=12$

2 In a factory, chemical reactions are carried out in spherical containers.

The time, T minutes, the chemical reaction takes is directly proportional to the square of the radius, $R \mathrm{~cm}$, of the spherical container.

When $R=120, T=32$
Find the value of T when $R=150$

\qquad
(Total 4 marks)

3 The weight of a piece of wire is directly proportional to its length.
A piece of wire is 25 cm long and has a weight of 6 grams.
Another piece of the same wire is 30 cm long.
Calculate the weight of the 30 cm piece of wire.

4

Graph A

Graph B

5 A ball is dropped from a tower.
After t seconds, the ball has fallen a distance x metres.
x is directly proportional to t^{2}.
When $t=2, x=19.6$
a Find an equation connecting x and t.
\qquad
c Find how long the ball takes to fall 10 m .
\qquad

6 An electrician has wires of the same length made from the same material.
The electrical resistance, R ohms, of a wire is inversely proportional to the square of its radius, $r \mathrm{~mm}$.

When $r=2, R=0.9$
a \mathbf{i} Express R in terms of r.
ii On the axes, sketch the graph of R against r.

One of the electrician's wires has a radius of 3 mm .
b Calculate the electrical resistance of this wire.

7 Jodi went on a trip by cycle from his home. The diagram shows his distance/time graph.
b Where was Jodi after 120 minutes?
. .
c Between what times was Jodi moving fastest?
\qquad
\qquad minutes
d Calculate Jodi's speed during the first 20 minutes of his trip. Give your answer in kilometres per hour.
\qquad
e At what time had Jodi cycled 14 km ?
\qquad minutes
\qquad

