1 a For the equation $y = 5000x - 625x^2$, find $\frac{1}{dx}$.	
b Find the coordinates of the turning point on the graph of $y = 5000x - 625x^2$.	(
(.,
	(
c i State whether this turning point is a maximum or a minir	num.
ii Give a reason for your answer.	
	(2
 d A publisher has to set the price for a new book. The profit, £y, depends on the price of the book, £x, where 	(
d A publisher has to set the price for a new book. The profit, £y, depends on the price of the book, £x, where $y = 5000x - 625x^2$	(:
d A publisher has to set the price for a new book. The profit, £y, depends on the price of the book, £x, where $y = 5000x - 625x^2$ i What price would you advise the publisher to set for the	(
d A publisher has to set the price for a new book. The profit, £y, depends on the price of the book, £x, where $y = 5000x - 625x^2$ i What price would you advise the publisher to set for the £	(book?

A

5 A farmer wants to make a rectangular pen for keeping sheep.
He uses a wall, AB, for one side.

For the other three sides, he uses 28 m of fencing.

He wants to make the area of the pen as large as possible.

The width of the pen is x metres. The length parallel to the wall is (28 - 2x) metres.

a The area of the pen is $y \text{ m}^2$.

Show that $y = 28x - 2x^2$.

b For $y = 28x - 2x^2$ **i** find $\frac{dy}{dx}$,

ii find the value of *x* for which *y* is a maximum.

iii Explain how you know that this value gives a maximum.
 (5)
 c Find the largest possible area of the pen.
 (2)

(Total 8 marks)

(1)

.....